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Universite de Nancy I, Facult6 des Sciences, BP 239,54506 Vandoeuvre les Nancy Cedex, 
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Abstract. We propose to establish. by a general treatment, the relationships between all the 
3-wave non-linear optical interactions: sum and difference frequency under collinearphase- 
matchingconditionsoftypes I, I1 and IIIin negativeandpositive uniaxial andbiaxialcrystals. 
Aclassification ofthese interactionsisestablished, basedonthe field factor: this tensorentity 
characterizes the polarizations of the different spectral components of the beam interacting 
with the crystal. The field factor only depends on linear optical properties and is convenient 
for the evaluation of the 3-wave mixing effective non-linear susceptibility. 

1. Introduction 

The following criteria are usually considered for the evaluation of the 3-wave non-linear 
optical properties of the crystals [l, 21: non-centrosymmetry of the class of orientation 
symmetry, density, orientation and polarizability of anharmonic chemical bonds and of 
course transparency at the frequencies concerned and finally phase-matchingconditions. 

We show in this paper that a crystal which complies with these conditions does not 
necessarily permit sizeable non-linear mixing. The coupling can also be nil for certain 
classes of crystalline symmetry when the interacting waves have a particular con- 
figuration of polarization. 

Then it is essential to calculate the theoretical efficiency of each interaction. It 
depends on the effective coefficient xee, which is defined by the scalar product of the 
non-linear polarization PNL(w) with the electric field E(w)  at the circular frequency w 
of the considered wave. Thus, the interaction efficiency depends not only on the second- 
order electric susceptibility x(*) but on the polarization of the waves. 

The originality of our work lies in the consideration and study of the product ete,ek 
of the electric fields components of the three waves relative to xijk. We call this product 
the field factor, written Fiik, which is the element of the tensor, written F, characteristic 
of the beam interacting with the crystal. The field factor tensor F depends only on the 
linear optical properties: dispersions in frequency of the refractive indices and of the 
birefringences. We establish, by the calculation of the field factor, the relations between 
the different 3-wave non-linear optical interactions: sum frequency mixing (SFM), dif- 
ference frequency mixing (DFM), under the different typesof phase-matchingconditions, 
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in directions of propagation of positive and negative optical sign, in uniaxial and biaxial 
classes of symmetry. A classification of these interactions is established. 

B Boulanger and G Marnier 

2. Definitions 

2.1. Phase-matching relation and configuration ofpolarization 

Our study requires a precise definition of the non-linear optical interactions at three 
waves [3]: SFM and DFM, collinear phase-matched in uniaxial and biaxial crystals. 

2.1.1. The conservation of energy during the interaction imposes the following relation 
between the circular frequencies of the three waves: 

w , + w , - w , = o .  (1) 

WI < w2 (-3). (2) 

By convention, we take: 

In aphase-matchingdirection U ,  with thespherical coordinateseand a,, theconservation 
of momentum implies the relation: 

WO,, e, 

k(wi ,  e, p) = [ w i / c l n ( w ,  e, a,)u(e. a,) 

+ ww,, 8, a,) - w3, e , ~ )  = 0 (3) 

(4) 

with 

i =  1 ,2 ,3  

wiisthecircularfrequencyofwavei,cisthevelocityoflight inavacuumandn(wi, 8.9)  
is the refractive index at wi in the direction of propagation with the unit vector U (e, a,). 
0 and a, are the spherical coordinates relative to an orthonormal frame of which the axes 
X, Y, 2 are the principal axes of the index ellipsoid. The different tensors studied will 
be expressed in this 'optical frame', linked to the crystallographic frame in accordance 
with the standard convention 141. 

The artesian coordinates (ux,  uy. uJ are related to the spherical coordinates (e, a,) 
by the usual relations: 

ux = cos a, sin 0 uy = sin a, sin e U ,  = COS e. ( 5 )  
The three wavespropagate in the same direction U (e,  p). Therefore, according to (4), 
the phase-matching direction (3) is written: 

w l n ( o l ,  e, a,) + w2n(w2,  e, a,) - w3n(%. e, a,) = 0. (6) 

2.1.2. The refractive indices in the direction U are given by the Fresnel equation which 
admits two solutions [5 ] :  

n + ( w i )  = [ 2 / ( - ~ ,  - ( ~ f  - 4Ci) ' /2)] ' /2 (7) 

n - ( w i )  = [ 2 / ( - B ,  + (Bf -4ci)'/2)]1p ( n + ( w i ) ' n - ( m ; ) )  (8) 

(9) 

and 

with 

B,  = -u2(bi + ci) - u;(a, + ci) - u:(ai + b i )  
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Ci = u:bici + u:aici + u:aibi (10) 

ai = n;’(oi)  bi = n;*(mi) ci = n;*(oi)  (11) 

with 

nx(oi), n,(mi) and n,(oi)  are the principal refractive indices of the index ellipsoid at the 
circular frequency mi. 

The two uniaxial and biaxial optical classes of positive and negative signs, are 
represented in figure 1 by their respective index surfaces from which the equations are 
given by relations (7) and (8). 

2.1.3. The electric field vectors E+ and E-, associated with the indices n+ and n - ,  are 
calculated from the propagation equations projected on the three axes X, Y, 2. We 
obtain, for each wave, three equations which relate the three components (Ex,  Ey,  Er) 
to the components (ux. uy, U,) of the direction of propagation [6]: 

p = x ,  y andz. 

(i) In a negative uniaxial crystal, the polarization E+ is associated with the ordinary 
wave, symbolized by (o), which is contained in the (X, Y) plane. The polarization E-, 
orthogonal to E+, is associated with the extraordinary wave, (e) (see figure 1). The 
situation is inverted in a positive uniaxial crystal. The electric field components of the 
ordinary waves, E O ,  and extraordinary waves, Ee, are the following: 

Eo = F e o  with eoof components 

with ee of components 

and 

Ee = Fee 

with E’ * E o  = 0. 

ated unit vector. p(0) is the birefringency angle given by: 
Pc are the amplitudes of the ordinary and extraordinary waves and eo.e the associ- 

p ( 0 )  = arcos[D. E] 

where D is the electric displacement vector with 
D .  E = (cos”/n’, + sin’e/n:)(cos’B/n$ + sinZ8/n:)-@ (14) 

(ii) In a biaxial crystal, E+ and E- are non-orthogonal except for the directions of 
propagation collinear to X, Y and Z. But the orthogonality of the electric displacement 
D+ and D- is always verified. We shall keep the designation of ‘ordinary’ and ‘extra- 
ordinary’ waves and of ‘positive’ and ‘negative’ sign for the biaxial crystals. For a positive 
biaxial crystal, the ordinary wave has index n+, only in the (X, 2) plane for the directions 
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WSITIVE UNIAXIAL CRYSTAL NEGATIVE UNIAXIAL CRYSTAL 
n. = IlY = 00 c n, = n. nx =")I i no > "% i n, 

Y Y 

mmwE BIAXIAL CRYSTAL NEGATIVE BIAXIAL CRYSTAL 
n. < D J  < n, 111 > "J  > n, 

Figure 1. Index surfaces of lhe negative and positive uniaxial and biaxial optical classes. 

or internal index surface. O.Adenotestheoptica1 axis; the thickcurvesdenote theordinary 
wave and the fine curves the extraordinary wave. 

p c  +._ is the electric field of the ordinary or exlraordinary wave associated with the external 

of propagation contained between 2 and the optical axis; the ordinary wave has index 
n-everywhereelse.Theextraordinary wave hasindexn-only between Zand theoptical 
axis, and has index n+ everywhere else. The situation is inverted for a negative biaxial 
crystal (figure 1). Thus, for a biaxial crystal, there is a discontinuity of the polarization 
on either side of the optical axis 171. In other words, all biaxial crystals have the 
characteristic of a positive or negative uniaxial crystal according to the direction of 
propagation with respect to the optical axis. The ordinary wave only has index n, and n, 
in the principal plane of the index surfaces, that is the case in uniaxial crystals for each 
direction of propagation. 

2.1.4. The dispersion in frequency of the refractive indices determines the number of 
possible combinations of index which verify the phase-matching relation. 

According to (1) and (6), the relation between the refractive indices is: 

[n(w3) - n ( w d l / [ n ( w ~ )  - n ( 4 1 =  W I / ~ Z .  (15) 

4 w l )  == 4%) < n(wz) (16) 

4%) < n(w3) < n(w1). (17) 

n t ( w 3 ) > n + ( w Z ) > n + ( w , )  (18) 

This ratio, necessarily positive, imposes: 

or 

Furthermore, the dispersion in frequency implies, according to (2): 
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and 

n - ( w 3 )  > n - ( 0 2 )  > n-(wl) .  (19) 
According to (18) and (19), the relations (16) lead to the following phase-matching 
relations: 

w l n + ( o l )  + w 2 n + ( 0 2 )  - w3n-(w3) = 0 

w l n - ( w l )  + u2n+(w2) - w 3 n - ( w j )  = 0. 

W l n t ( w , )  + w 2 n - ( w 2 )  - 0 3 n - ( w 3 )  =O. 

(20) 

(21) 

(22) 

and 

The inequalities (17) authorize just one phase-matching relation: 

The phase-matching conditions are related to the birefringence and to the dispersion 
in frequency of the refractive indices. I n  accordance with these parameters, Hobden [SI 
classifies the different types of cone generated by the phase-matching directions of the 
second harmonic generation (SHG). 

For each phase-matching relation ( Z O ) ,  (21) or (22) there is a specific configuration 
of polarization according to the ‘optical sign’ of the direction of propagation, which leads 
to six different configurations (table 1). 

The type of phase-matching, I, I1 or 111, is defined acording to the polarizations of 
the waves at w 1  and w2: type I characterizes the interactions for which these two waves 
have the same polarization: (e) (e) or (0) (0). The two polarizations are different, (e) (0) 
or (o)(e), for the types I1 and I11 [9]. 

The type of phase-matching differs according to the interactions: SFM (a3= 
W I  + W z ) ,  DFM ( W 1 =  W3 - W 2 )  and DFM (W2 = U3 - W1) (table 1). 

2.2. Field factor and classification principle 

2.2.1. The non-linear interactions at three waves are governed by the second-order 
electricsusceptibility tensor,y(2). This tensor of rank three has twenty-seven independent 
elements in the general case [3]: 

xxxx XXYY xxzz XXYZ XXZY xxxz xxzx XXXY XXYX 

XYXX X W V  XYZZ xwz XYZY XYXZ XYzv XYXY xwx (23) i x w x  XZYY xzzz XZYZ XZZY xzvz xzzx Xwv XZYX 

= 

X, Y and Z refer to the ‘optical frame’. 
The orientation symmetry [4] imposes relations between the components of the 

tensor and so reduces the number of independent components. Furthermore there 
are other restrictions when the non-linear polarization is of electronic, rather than 
ionic, origin and when the crystal has a low absorption at the frequencies concerned 
(Kleinman’s conditions) [lo]. The nature and relative orientation of the anharmonic 
chemical bonds condition the magnitude and sign of the non-zero elements of the tensor 
[L2,111. 

2.2.2. The efficiency of the non-linear interaction between the three waves depends not 
only on ,y”) but on the configuration of polarization. 
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In the case of the SFM and for each direction of propagation with the coordinates (e, 
q) ,  the effective coefficient, ,yea, isexpressed by [3]: 

x.tr(w3 = w1 + w 2 ,  e, = e(w3,8,  ~ ) ) x " ) ( w , ) :  e ( w ,  e, qIe(w2. e, (24) 
so: 

(26) 

xetf(w2 =a3 - w , , e , q ~ ) =  Cee:(wZ. e , ~ ) ~ X i j k ( ~ Z ) e , ( ~ 3 , e , ~ ) e k : ( W l , e , ~ ) .  
i P 

(27) 

The indices (i, j ,  k) refer to the 'optical frame' (X, Y ,  Z). 

frequency w,(p = 1,2,3),  calculated from relations (12), following by normalization. 
e(wpr 8, q) is the unit vector of the electric field of the wave with the circular 

2.2.3. Earlier [12, 131, for the particular experimental study of the SHG and direct 
THG (third harmonic generation) in KTP, we have considered the product of the 
components of the electric fields as a single physical entity. We have called it the 'field 
factor' written fifk and defined by: 

Fijk(W3 = w 1  + wz, 8, q) = ef(w3,8, v)eAwl, 8, v)ek(wz, e, q) 
Fok(wl = w3 - wz, 8, cp) = e f h  8, q)ej (w3,8,  q ) e k ( % ,  8, V)  

F i j k b z  = w 3  - wl, e, q) = e;(oz, e, q ) e j ( w 3 ,  e, q)ek(%, e, VI. 

(28) 

(29) 

(30) 

Fijk corresponds to the contribution of xjjk to the effective coefficient ,yefr. 

components x v k  and of the field factors Fgk: 
Therefore, the effective coefficient xeii of the SFM is a linear combination of the 

xedw3 = w 1  + wz, 8, = E F , ~ ~ ( ~ ~  = w1 + wz, 8, q)x i jk (w3)  

% . d w i  = w3 - %, 8, q) = 2 Fijk(Wi = ' 3 3  - Wz, 8, Q))Xijk(Wi) 

(31) 

(32) 

ijk 

ijk 

For the SFM, the first tensor index is relative to the wave at w3,  the second to the wave 
at w1 and the third to the wave at wz. For the DFM (wl = w 3  - wz),  the first, second and 
third tensor indices are relative to the waves at wl, o3 and wz respectively and for the 
DFM (oz = w 3  - ol) to the waves at wz,  w 3  and w1 respectively. 

Thus the field factor is a tensor of rank three which has twenty-seven independent 
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elements in the general case: 
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Fxxx Fxvv Fxzz FXYZ Fxzr Fxxz Fxzx FXXY Fxvx i Fzxx FZYY Fzzz Fzvz Fzzv Fzxz Fzzx Fzxv Fzvx 
F =  Fvxx FYW FYZZ FYYZ Fvzv FYXZ F ~ z x  FYXY FYYX . (34) 

Each component F,,k is a trigonometric function which depends on the direction of 
propagation, in this case the phase-matching direction, so depends only on the linear 
optical properties of crystal. 

The optical class, uniaxial and biaxial, and the properties of orthogonality and 
collinearity of the coupled electric fields impose restrictions and relations between 
elements and so reduce the number of independent components, an aspect we hope to 
study subsequently. 

According to the configuration of polarization, each family comes in the form of 
three different tensors, written (eoo), (ooe), (eoe) for the family 20.e and (oee), (eeo), 
(eoe) for the family 2e.o. The correspondence between polarizations and frequencies is 
given in table 2 in the eighteen possible cases. It is not an arbitrary re-assembly: it is 
based on the properties of orthogonality and collinearity of the electric fields of the three 
waves. 

Table 2. Classification in two families. %.e and 2c.o. of the eighteen possible cases for the 
3-wave non-linear optical interactions. Correspondence between the types of interaction. 
the optical signs of propagation directions. the polarization configurations, the circular 
frequencies and the tensor indices. 

Type 2o.e Configuration of polarization Type 2e.o Configuration of polarization 
,.. , , ,  , ,..,... . . ,.....,,...,I.. ,.,, ,,,, 

SFM SFM 
w>=UJ,+O)*  WP 01 w2 w,=  w ,  + w z  w3 0 ,  w2 
Type I e 0 0 Type I 0 e e 
C O  Ref. (g (i) (k) >o Ref. (i) ( j )  (4 
Type I1 0 0 e Type II e e 0 

>O ( k )  (i) (0 CO ( k )  (i) (0 
Type III 0 e 0 Type Ill C 0 e 
>O ( k )  (0 (i) CO (k) (i) (i) 
DFM DFM 
0 ,  = wj  - w2 0 %  m, U2 w ,  = 0 1  - 0 1  " 8  w ,  w2 

Type I C 0 0 Type I 0 e e 
>O (0 ( k )  0') <o (9 (k) (i) 
Type II 0 e 0 Type I1 e 0 e 
<O (i) (4 ( k )  >o (1) (0 ( k )  
Type 111 0 0 e ~ y p e  ni C e 0 
>o (i) (k) (9 CO (1) (k) (4 

o ) z = U J ) - W ,  0 2  U3 w ,  w * =  0 ,  - w ,  U3 @I 
Type I e 0 0 Type I 0 e e 
>O (i) ( k )  ( I .  <cl Cl (k) 0) 
Type II 0 0 e Type 11 e e 0 
>O (1) ( k )  (0 CO (i) (4 (9 
Type Ill 0 e 0 Type 111 e 0 C 
<O (k) (9 (i) >O (k) (0 0'1 

DFM DFM 
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(i) In uniaxial crystals, the electric fields of the ordinary and extraordinary waves 
verify the following relation: 

eo(wi) .  ee(wj) = 0 withi, j= 1,2or3.  (35) 
The orthogonality of the electric fields of the waves corresponding to the two first 

suffices, to the two last suffices and to the first and third suffices leads respectively to the 
three relations: 

Fzxi + Fyyt + Fzzi  = 0 

F ,  + Fiyy + Fizz = 0 

FXh + Fyiy + F,, = 0 

(36) 

(37) 

(38) 
where i = x ,  y ,  z. 

Hence, in uniaxial crystals, the elements of tensors of types (eoo) and (oee) obey the 
equalities (36), (38), those of types (ooe) and (eeo) obey (37), (38) and those of types 
(oeo) and (eoe) obey the equalities (36) and (37). 

(U) In biaxial crystals, the relations (36), (37) and (38) are verified only for the 
directions of propagation collinear to the principal axes of the index surface. For other 
directions, these equalities are not strict, especially since n, differs from n,. 

2.2.4. The field factor is suited to the study of the relationships between SFM and DFM, 
which leads to the classification of all these interactions: 

(i) For a given interaction, the permutation of the polarizations (extraordinary and 
ordinary) without the permutation of the associated frequencies, allows the interactions 
of types I, I1 and I11 for the directions of propagation with different optical signs to be 
grouped together. There are two families, each grouping together nine situations: the 
family, written 20.e, in which two ordinary waves are coupled with one extraordinary 
wave, and the family 2e.0, for which two extraordinary waves are coupled with one 
ordinary wave. The permutations of the tensor indices ( i .  j ,  k )  associated with the 
permutation of the polarizations are given in table 2. We take the SFM of type I in the 
negative class for the family 20.e and the SFM of type I in the positive class for the family 
2e.o as references for these permutations. 

(ii) Furthermore, for a classof a given sign, the permutation of frequencies with the 
permutation of polarizations governs the relationships between SFM and DFM. For each 
phase-matching direction the equalities are: 

Fik(k(W3 = w 1  + U * )  = Fj;k(w, = w 3  - w2)  = F$oz = W )  - w1) 

F Y k ( 0 )  = w 1  + w z )  = Fj;/(wI = 0 3  - w z )  = Ffiii(W2 = W )  - w1) 

F$?(w3 = w 1  + w z )  = Fjik(k(W, = w3 - w2) = F&(wz = W )  - w , ) .  

(39) 

3. Uniaxial classes 

The typical field factors of the two interaction families are calculated for the SFU (Al = 
1.32pm,d2 = 0.66pm,d3 = 0.34pm)in typeIphase-matchingconditionin two typical 
uniaxial crystals of which the dispersions in frequency of the refractive indices and 
of the birefringence are comparable to those of usual non-linear crystals at optical 
frequencies: one with positive sign for the study of the family 2e.o and the other with a 
negative sign for the family 20.e. The associated phase-matching directions are cal- 



0.66 1.7612 1.11611 1,8611 

BIAXIAL CRYSTAL 

LIU1 

FigureZ. Refractive indices and SFM type I 
phase-matching directions of uniaxial and 
biaxial crystals for the field factors cal- 
culation. The phase-matching relation is 
n‘(Ai)/Ai + n + ( A d / ( A J  - ~ A J ) / A , = O .  

culated from (20) with the refractive indices given in figure 2. The spherical coordinates 
(8, q) of the phase-matching directions are drawn on the Wiilf diagram of figure 2. The 
two crystals differ only by the inversion of the values of the ordinary and extraordinary 
indices which leads to two adjacent phase-matching cones and thus to field factors with 
comparable magnitudes. 

0.44 

3.1. Field factors of interactions with apolarization configuration of type 20.e 

Twelve field factors are non-zero for the type 20.e and are described by twelve trig- 
onometric functions with the following 6 and q variations: 

(1) =sin[@ + p(w , ,  e)] s i d q  

(2) = -cos[e + p(w , ,  e)]  COS^^, 
(3a) = (3b) = -sin[@ + p(o,,  e)] sin q cos q 

(4a) = (4b) = - (5)  = cos[O + p(w , ,  e)] coszpl sin q 
@a) = (Zb) = -(5) = cos[8 + p(w , ,  e)] cos q sin”. 

(i) = sh[e + p(d,, e)]  COS*^ 
(3) = -CO@ + p ( w , ,  e)] sin’a, 

(40) 

1.1152 ,,ma 1,9360 1Jl52 
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The notations such as (1) and (7) indicate that the two functions are out of phase by 
n/2 in QI. This notation bears no relation to the written convention of Hermann-Maugin 
for the orientation classes of symmetry. For a given phase-matching direction cone, 0 is 
constant for all values of 91. The birefringence angle p(w,, 0) is given by relation (14). 

The QI angular variation of each function is the same for all the 20.e interactions. But 
the 0 angular variation depends on the considered interaction according to the following 
relations (39). 
6J7 = w1 for: 

S F M ( U ~  = o, + w 2 )  type I11 DFM(O~ = w 3  - u2) type I 

D F M ( W ~  = w 3  - col) type 11. 
wq = w2 for: 

S F M ( W ~  = w l  + w 2 )  type I3 DFM(W* = w3 - 0 , )  type I 

DFM(W~ = w3 - w 2 )  type 111. 

wq = w3 for: 

SFM(U~ = o1 + w 2 )  type I DFM(W1 = (03  - W t )  type 11 

D F M ( W ~  = w 3  - wl) type 111. 

p ( w l ) ,  p(wz)  and p(w3) are different in accordance with the dispersion in frequency of 
the birefringence. These functions are drawn in figure 3 for values of ‘p contained 
between 0 and n/2, 91 being the spherical coordinate of each type I phase-matching 
direction for the SFM in the negative typical crystal. 

4.0 
0 ~ 0 ” ~ D ” l l  

m*au*rowa-)n 

Figure 3. q angular variation of type 20.e field 
factors in uniaxial crystals. 

Figure 4. v angular variation of type 2e.o field 
factors in uniaxial crystals. 
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The calculation of the twelve field factors, for each of the eight other cases of the 
family %.e, leads to the same set of nine trigonometric functions. But to each function 
corresponds a tensor element characteristic of a given case. The relation between the 
trigonometric functions and the elements of the field factor tensor are given in table 3. 
The equalities (39) relate SFM and DFM of types I, I1 and III. 

The three tensors (eoo), (ooe) and (oeo) are described in table 4. They have twelve 
non-zero elements of which four are independent. 

Thus, for a crystal belonging to a given class of orientation symmetry, the elements 
of the second order electric susceptibility tensor are not all involved, and vary in 
accordance with the configuration of polarization of the beam: (eoo), (ooe) or (oeo). 
Conversely, for a given configuration of polarization, the elements of the field factor 
tensor are not all involved and vary according to the orientationsymmetry of thecrystal. 

Tables 5(a) and 5(b) collect the characteristic functions of the non-linear interaction 
of the family 20.e for the thirteen non-centrosymmetric uniaxial classes with the Scho- 

Table 3. Correspondence between the type 20.e uniaxial functions and the e,, coefficients 
associated with the different interactions of the family 20.c. 

Type 2o.e or 20.c 2e.o Uniaxial functions 
- 
4 - -  3 4 - Optical 

Interactions sign 1 i 2 2 3a 3b 4a 4b 4a 4b 5 5 
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Table 4. Type (eoo), (ooe) and (oeo) field factor tensors . F,,k(v) + 0; F,,k(v) # 0, 
periodicity n; 0 FUk(v) # 0, periodicity n/2. - Fqk(v) = F,(rp); E,k(v) = 
-Fdv);+-- E ~ P )  = Fdv + 4) 
Interaction Type 2o.e field factor tensor for uniaxial classes 

SFMtypeI<O 
w j =  RI, + 0 2  

DFM type I >  0 
0 1  = 0, - 0 1  

wz= 0, - 0 ,  

srmtpe  11 > 0 
w j =  0, t 0 2  

DFM type 111 > 0 
w ,  = 0 1  - 0 2  

DFM type I1 > 0 
w* = w,  - w ,  

Type eoo 
xx w zz YZ ZY xz zx XY YX 

Type ooe 
xx w zz YZ ZY xz zx m YX 

enflies written convention. The corresponding tensor elements are read in table 3. The 
same elements Fvk are involved in classes C,and C,. It is the same for the classes 4mm 
and 6mm, as for the classes D4 and D,. 

For the classes of symmetry C,, D3, C4, C,, D4 and D6, the involvement of the 
function (3), relative to the field factors with X, Y and Z indices, depends on the 
considered interaction as table 5(b) shows. Indeed, the xuy and x,, elements of the 
electric susceptibility tensor in these six classes are zero whereas xzyz, xxzy, xyx, and x,, 
are non-zero. 

The effective coefficient of all interactions with a type 20.e configuration of polari- 
zation is NI in the crystals belonging to the classes of symmetry D4 and D,. These two 
classes have the same ,y(*) tensor and the only non-zero components are x,, = -,yyxz and 
x,, = -~~~.Thu~,accordingtothefieldfactortensorsoftable4,theeffective coefficient 
is nil for all phase-matching directions. 

For the types eoo, ooe and oeo, respectively: 

xeff = oO1ryl + %yxz)  + 001, + X Y A  = 0. 

xeff = FxyrO1xyr + X Y d  + 001, + xu,) = 0. 

xdf = oO1,z + x,) + FzryO1xy + X v r J  = 0. 

(41) 

(42) 

(43) 
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Table5(b).InvolvementoftheFunctions(3a)and(3b)oftype20.eandofthe~nctions(2a), 
(Zb), (?a) and (Zb) of type 2e.0, according to the different interactions, for the uniaxial 
classes of symmetry C,, D,, C,, C,, D4 and D6. Once again, asterisks denote functions for 
whicb the involvement dependsoninteraction. 

Type2e.o 

Interactions 3' 2' 2. 
Type 20.e - 

sFM(UI=U,+w2)  

SFM ( U ]  = w ,  + U?)  

sFM(U,= U ,  + U 2 )  

Type I 

Type 11 

Type I l l  

D F M ( U l = O ~ - U ~ )  
Type Ill 

- 
any Za, 2b 2a,Zb 

3a,3b 2b 2b 

3a. 3b 2b 2b 

3a. 3b 2b 2b 

- 

- 

- 

any 2a, 2b %,Tb 

- 
3a, 3b 2a 2a 

3a, 3b 2a Za 

3.2. FieM factors of interactions with a polarization configuration of type 2e.o 
The interactions of type 2e.o have eighteen non-zero field factors described by eighteen 
different trigonometric functions with the following angular variations: 

(I) = cos Q, sin[O + p ( o , ,  e)] sin[B + p(w,, e)] 
0) = -sin Q, sin[o + p(w,, e)] S h [ e  + p(w,, e)] 
(2a) = sin2q mS[e + p(w,, e)] sin[@ + p(w,, e)] 
(2b) = sin'p, sin[O + p(w, ,  e)] cos[O + p(w,, e)] 
@a) =COS*Q, cos[e + p ( o , ,  e)] sin[@ + p ( o , ,  e)] 
(~b)=cos2g,sin[8+p(o,,e)]cos[e+p(o,,e)l 

(3) = cos3q cosp + P(w,, e)] cos[e + p(w,, e)] 
(3) = -sin3q + p(w,, e)] Ws[e + p(w,, e)] 
(4a) = -(4a) = sin Q, cos q cost8 + p(w,, e)] sin[@ + p(w,., e)] 
(4b) = -(zb) = sin Q, COS Q, sin[@ + p(w,, e)] mS[e + p ( w , ,  e)] 
(5a) = (5b) = - (6 )  = sin Q, cos2q 

(Sa) = (Sb) = -($I = -sin2q cos Q, cos[@ + p(w,, e)] CO@ + p(wr ,  e)]. 

(44) 

- 

+ p(w,, e)] ms[Q + p(w,,  e)] 
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As for the type 20.e. the QI angular variation of each function is the same for all the 
2e.o interactions. The 0 angular variation depends on the dispersion in frequency of the 
birefringence angle p. The frequencies wq and w, of relations (44) are the following. 

(wq, 4 = (at, 4 for: 
SFM(O, = w 1  + 02) type I 

(mq. U,) = wl) for: 
S F M ( U ~  = w ,  + 02) type I1 

(q, 4 = (w3,  w 2 )  for: 

DFM(O~ = w 3  - w 2 )  type I1 

DFM(W* = w 3  - wI) type 111. 

DFM(W~ = w 3  - w 2 )  type 111 

D F M ( W ~  = w 3  - ol) type I. 

S F M ( W ~  = w 1  + w 2 )  type I11 DFM(UJ! = w 3  - 02) type I 

DFM(O~ = w 3  - wl)  type 11. 

The functions (2a) and (2b) have the same QI variations but differ in 8. It is the same 
for the functions (4a) and (4b) and so for the functions (aa) and (xb). The functions (Sa) 
and (5b) are equal. It is the same for (sa) and (sb). Thus, the sixteen functions can be 
grouped into twelve functions with different QI equations: (1); (i); (2) for the functions 
(2a, 2b); (2) for @a, yb); (3); 0); (4) for (4a, 4b); (z) for @a, Tb); (5 )  for (Sa, Sb); (5) 
for ('a, 5b); (6) and (z). 

The functions of the couples (1, i), (2, z), (3,3), (4, ZjJS, 5)  and (6 ,6 )  are out of 
phase by x/2in QI. 

The functions are drawn in figure 4, in the special case of the SFM of type I, phase- 
matched in the positive typical crystal for which the refractive indices are given in figure 
2. The associated field factors are given in table 6. 

The functions (2a) and (2b) are joined because the dispersion in frequency of the 
birefringence angle is small in this particular case, this is usually true. It is the same for 
the functions (Za, Zb), (4a, 4b) and (za, ab). 

The three tensors for the configurations of polarization (oee), (eeo) and (eoe) are 
described in table 7. The tensors have eighteen non-zero elements for which seven are 
strictly independent. The type 2e.o functions involved are given in tables S(a) and 5(b) 
for the thirteen non-centrosymmetric uniaxial classes. The re-assembly of the classes of 
symmetry for the involvement of the type 2e.o functions is the same as for the type 20.e. 
The specific case of the field factors of the X. Y and Z indices concerns the functions 
(2a), (2b). (%) and ob) .  

The functions (1) and (i) are never involved because the elements ,yy,, xzYz, xzzy,  
xxu, xZx2 andxzu are zero for all the non-centrosymmetric uniaxial classes of symmetry. 

The classes C, and Cb forbid all interaction of type 2e.o for similar reasons to the 
classes D, and D, with the interactions of type 20.e. 

4. Biaxial classes 

The electric field vectors of the field factors must be calculated from the general relations 
(12). Indeed, the relations (13), (14), (40) and (44) are only valid in the principal planes 
of biaxial crystals and for all directions of propagation in uniaxial crystals. But we keep 



Field factor for 3-wave non-linear optical interactions 8343 



8344 

the designation of ‘ordinary’ and ‘extraordinary’ for biaxial crystals according to the 
discussion of sections 2.1.3. (ii) and 2.2.3. (ii). 

We distinguish two groups of phase-matching cones for the biaxial crystals in accord- 
ance with the localization of the phase-matching directions with respect to the optical 
axis: 

(i) The phase-matching directions which all have the same optical sign define a cone 
of type A (figures 2 and 5). Thus, the associated interactions have a polarization 
configuration of type 20.e or 2e.o according to the criteria previously developed. 

(ii) The phase-matching directions which change optical sign define a cone of type 
B (figure 5).  The associated interactions change their polarization configuration on 
eithersideofthe optical axis. Weshallcall’interactionsoftype 20.e 2e.o’theinteractions 
which are of type 20.e for the phase-matching direction located between the X axis and 
the optical axis in the (X, Z) plane. Thus, the configuration of polarization is of type 
2e.o between the optical axis and the 2 axis in the (X, Z) plane. The situation is reversed 
for the interactions of type 2e.o 20.e. 

B Boulanger and G Mamier 

QOSITWE BIAXIAL CRYSTAL 

FigureS. Refractive indicesofbiaxialcrys- 
taln which leads to types A and B phase- 
matching ‘cones’ for the SFM of type I. 
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4.1. Interactions with aphase-matching cone of V p e A  

This situation is directly comparabte to that of the interactions in uniaxial crystals for 
which the phase-matching cones are always of type A. 

The process is identical to the previous one. The birefringence and the dispersion in 
frequency of the refractive indices of the two typical biaxial crystals have been chosen 
so that the type I phase-matching directions of the SFM (A, = 1 pm, k2 = 1/2pm, k3 = 
1/3 pm) are identical for the two crystals. The data are given in figure 2. Furthermore 
these directions are near those of the two uniaxial crystals previously studied, in order 
to compare the field factors between uniaxial and biaxial classes. The field factors are 
calculated from the relations (12), (28), (29) and (30). 

The3-wave non-linear optical interactionsof type 20.e andof type2e.o aredescribed 
by twentyeven field factors united in twenty-seven trigonometric functions. The field 
factorscorresponding to the different interactions are given in tables 3,7,8 and 9. 

For these two types of polarization configuration appear two groups of functions: 

(i) The type 20.e functions (1, i), @,a, (3a, 3b), (4a, 4b, sa,  sb), (5,5) and the type 
2e.o functions (1, i), (Za, 2b, ?a, zb), (3,3), (4a, 4b, $a, zb), (5a, 5b, Fa, sb), (6), (G) 
concem the same coupling as those of the uniaxial classes and are called 'uniaxial 
functions'. Their angular variations are all the more similar to those of uniaxial classes 

Interaction Type 2 e . o  field factor tensor for uniaxial cImcs 

Type oee 
SFM type I > 0 
w,=w,+UJ2 
DFM type I < 0 X 
w ,  = 0, - ' 3 2  

wa= w ,  - w ,  Y 

Z 
Type eeo 

SFM type n < 0 
w , = w , + W 2  
DFM type 111 < 0 
w ,  = w, -  w* 
DFM type 11 < 0 
w * =  0 )  - 0 ,  

X 

Y 
Z 

Type eoe 
SFM type 111 < 0 
wj = 0,  + w >  
DFM type 11 > 0 
0, = w3 - 0 2  

DFM type 111 > 0 
w* = 0) )  - 0, 

X 

Y 

Z 

xx YY zz YZ ZY xz zx XY YX 

xx YY zz YZ ZY xz zx XY YX 

xx YY zz YZ ZY xz zx XY YX 
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Table 9. Correspondence between the type 2e.o biaxial functions and the Fgk coefficients 
associated with the different interactions01 the family 2e.o. 

______ - 
Type 2e.o or2e.o 2o.e Biaxial functions 

$ 9 - -  8 Optical - 
Interactions sign 7 7 8a 8b 9a 9b 9a 9b 10 

SFM 
o x = O , + O *  >o 
Type I 

U , = w , + 0 2  CO 
Type I1 

w , = o ,  + 0 2  <o 
Type 111 

DFM 
0 > = 0 , - 0 ,  >o 
Type I11 
DFM 
0, = 0,-  0 2  

DFM 
mz= 0 1 -  U ,  

SFM 

SFM 

Type I <O 

Type I 

w , = 0 , - 0 2  >o 
DFM 

Type I1 

DFM 
o J , = w , - w ,  

DFM 
U 2  = 0, - 0 ,  

Type 11 

Type 111 <O 

since n, approaches n,, that is the case with the chosen crystals. Thus, the functions are 
closed to those of figures 3 and 4. 

(U) The type 20.e functions (6), (G), (7a, 7b), (?a, ?b), @a, 8b), ($a, $b), (sa, 9b), 
(ga,gb) and (10) drawnin figure 6, and the type 2e.o functions (7,7), (sa, 8b), (sa, 9b), 
@a, 'ib) and (10) drawn in figure 7, are characteristic of the biaxial classes and are called 
'biaxial functions'. The curves of the trigonometric functions with the suffices a and b 
are joined because of the low dispersion in frequency of the birefringence angles, as for 
the uniaxial crystals. These functions are all the smaller since the biaxial crystal 'tends' 
to a uniaxial crystal, that is n, approaches n,. This 'increase of the degree of symmetry', 
also concerns the tensor and involves additional equalities between certain elements 
of the tensor but not necessarily a decrease of their magnitude. Thus, for a given 
interaction, the elements of the tensorxy") of a 'quasi uniaxial' biaxial crystal are weakly 
involved by the specific biaxial field factors. Nevertheless their global contribution can 
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I 

U FUNCTIONS 

Figure 6. Q angular variation of type 20.e biaxial 
field factors in biaxial crystals. 

Elgum 7. Q angular variation of type 2.0 biaxial 
field factors in biaxial crystals. 

06 

BIAXIALCLASSES 

.. I BuxlALcussEs 

Figure 8. Types 20.e and 2o.e 2e.o field factors 
which differ in the plane (X. Z). 

Figure 9. Types 2e.o and 2e.o 20.c field factors 
which differ in the plane (X. 2). 
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Table 10. Intervening 20.e and 2e.o uniaxial and biaxial functions for the five non-cen- 
trosymmetric biaxialclasses of symmetry. The standard frame of orientation ( x , ,  x2 ,  x,) is 
collinear to (X, Y, 2). 

Biaxial acentric C2 
classes of symmetry C, (211x3) (211.3 

- Intervening 
type20.e. i , i , 2 , 5 , 3 , 4 ,  1 , i , 3 ,  2.3,4.  
orZo.e.2e.o - %5,2,6,!,7, - 7,'i-S. - 5,6,7,  
uniaxial and biaxial functions 7,8.8,9,9.10 8,lO 1 ,9 ,B  

Intervening 

or2e.o 2o.e 4 ,a ,S ,5 ,6 ,6 ,  4,7 ,1 ,  3,5,6,  
uniaxial and biaxial functions 7. f .8 ,9 ,? .  10 8,lO 8 , 9  

type2e.o ~ i , 2 , 2 , 3 , ? ,  ?,is!, l , Z , Z ,  

Biaxial acentric C, 
classes of symmetry ( m l x J  (m I*%) C,  D2 

Intervening 
type2o.e. 2,2.4,!, 1.:. 2?7,  
or20.e 2e.o 5 .1 ,6 ,6 ,  S,6,8,8,  l .i ,8,H,lO 3 , I . i  
uniaxial and biaxial functions 9 .9  9.10 

1"teIVe"i"C ~~~ ~~ ~~~ 

type 2e.o 1 , 3 3 , 3  :,7.:. 
or2e.02o.e 5 .5 .6 .6,  6 ,1 ,7 ,  4 , Z , i , i , i o  2.2.8 
uniaxial and biaxial functions 9, 9.10 

be non-negligible in comparison with those of the uniaxial field factors, according to the 
sign of elements of tensor. 

Asforthe uniaxialclasses, the two typesofpoIarizationconfiguration,2o.eandZe.o, 
are grouped together in three specific tensors. These tensors have twenty-seven non- 
zero elements. The relationships between elements which are valid for uniaxial crystals, 
are not strictly verified for the biaxial crystals, especially since n, differs from n,. 

The intervening 20.e and 2e.o functions are given in table 10 for the five non- 
centrosymmetric biaxial classes of symmetry. All the functions with the suffices 'a' and 
'b' are not subject to the restrictions prevailing for the uniaxial classes. Thus, only the 
number of the functions of each couple appears in table 10 for example (8) for (Sa) and 
(8b). The field factors corresponding to the different interactions are given in tables 3, 
7 , s  and 9. 

4.2. Interactions with a phase-matching cone of type B 

The field factors of types %.e and 2e.o are calculated respectively for a typical negative 
crystal and for a typical positive crystal which respectively leads to a phase-matching 

' cone of type A for the SFM of type I. They are compared with the field factors of the SFM 
of type I with a type B phase-matching cone in two typical crystals: one positive for the 
study of the type 2e.o 20.e functions and another one negative for the study of the type 
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20.e 2e.o functions. The refractive indices of these crystals and the phase-matching 
cones are given in figure 5 .  

In figures 8 and 9, only the trigonometric functions of types 20.e and 20.e 2e.o on 
the one hand and of types 2.0 and 2e.o 20.e on the other hand which differ in the 
principal planes of the index surface are drawn. 

B Boulanger and G Marnier 

5. Conclusion 

The birefringence and dispersion in frequency of the refractive indices impose the 
polarizations of the coupled waves which compose the field factor tensor and which 
condition in part the non-linear interaction efficiency. The relations between the 
elements of the field factor tensor are governed by specific properties of symmetry, 
characteristic of the beam in interaction with the crystal. The design or use of a crystal 
for a given non-linear interaction requires taking into account the non-linear electric 
susceptibility and the field factor: the effective coefficient of an interaction can be nil 
even if the components of Fand x are non-zero. The classes of symmetry D, and D, for 
example forbid all interaction with a type 20.e configuration of polarization and the 
classes C,, and GV forbid the type 2e.o interactions and that for all phase-matching 
direction. However, the different attenuation factors which also depend on the linear 
opticalproperties, aswellas the walk-off angle and theangular, temperatureandspectral 
bandwidths, must be also considered for the calculation of the theoretical efficiency of 
interaction. 
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